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ABSTRACT

Based on the fast parallel matrix multiplication schemeI of Krishnamurthy and Klette, O(log m) step algorithms using
m matrix processors are described for the exact determination
of the Moore-Penrose generalized inverse and the rank of an
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1. Introduction

In a recent paper, Krishnamurthy and Klette [1] have shown

that the exact product of two (mxm) matrices having integer

elements with e-bit precision can be obtained in the MIMD

mode with complexity p=O(log r log e + (log em)(max log ei))
1

using prime moduli arithmetic with r primes, each of precision

ei bits. (All logarithms are taken to base 2.)

Based on this parallel scheme for multiplication, we describe

here a parallel method with m such matrix processors to deter-

mine exactly, in O(log m) steps, the rank and the generalized

inverse of a rectangular (mxn) matrix with integral entries.

This can be extended to matrices with complex number entries.

However, this procedure is in general invalid for the determina-

tion of the rank of a matrix over a finite field.

Since the rank of a matrix is very sensitive to errors in

computation (especially with matrices which are ill-conditioned),

throughout this paper our discussion will be confined to exact

computational procedures using residue arithmetric. For the

principles and practice of these procedures readers are referred

to the papers by Krishnamurthy, Rao and Subramanian [2] and

Krishnamurthy [3]. ..-,
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2. Principle

The computation of the g-inverse and rank of a rectangular

matrix is based on the following theorem [2,4]:

Theorem. Let A be any mxn matrix with real entries. Let

B(X) = (Xm+a 1 -X 1+...+am) be the characteristic polynomial of

B=AAt(At is the transpose of A). If k#O is the largest inte-

ger such that a k0 then the Moore-Penrose inverse of A is
A = -ak 1  (AAt )  + ... + ak-iI] (1)

If k=O is the largest integer such that ak 0, then A+=0.

Also, the rank of A is k. 1;

Based on this theorem an algorithm is described in [2] for

computing tile exact generalized inverse of A and its rank. In

this paper we describe a parallel version of this algoritnm

using the processor model described in [1].

Computation of the rank and g-inverse proceeds tnrough

the following steps:

1. Computing B=AAt

2. Finding the characteristic equation of B and computing

A+ using (1). This can be done by computing tie coeffi-

cients ak of B(X) using Leverrier's method [5], as

shown below:

Let XI,'2,... m be the characteristic roots of and let

=m
i=l

then Sk = trace(Bk) for 1,k~m

-. -



and

1 0 0. . .0 ar S1
S1 2 0. . 02 2
S2 S1 3= - (2)

63 S 2 S. I . 0

LSm-1 Sm-2* .S1mj La. -Sm .

which in matrix form can be expressed as

Mc = S

Equation (2) can be proved by using the well known iewton's

identities [5].

The calculation of ak from (2) and determination of A+ pro-

ceeds as follows:

i) Computation of Sk , l-<k-m:

2This requires computation of the powers of B, viz., B

k m
...,B ,...,B m , and the computation of the trace of each

Bk (1_5k_5m).

ii) Computation of M
- :

The determination of ak and hence the rank k requires

the computation of the inverse of the non-singular tri-

angular matrix M.

iii) Determination of M- S

iv) Determination of A+ using (1).

iiimm ii
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3. Complexity

We now proceed to compute the complexity. For this

purpose we choose as the unit of measurement, the matrix multipli-

cation time (o) and matrix addition time (a) each with com-

plexity as defined in (1]. We also assume that by a processor

we mean a single matrix processor which can multiply two matrices

in time p or add in time a. The total complexity can therefore

be computed in terms of the basic operations using these and

the definitions in [1].

The computation of powers Bk requires log m parallel steps

with m/2 matrix processors each performing a matrix multiplica-

tion in time U. The computation of the trace requires log m

steps of adaition time for m numbers in each Bk; this can be

done with m matrix processors in parallel.

For example, if m=16, with 8 processors the number of

required steps is 1og2 16=4, and at each step the calculations

are organized as follows:

Time Processors

Step 1 2 3 4 5 6 7 8

1 B2

2 B4  B3

3 B8  B7  B6 B5

4 B1 6 B15 B14 B13 B12 B11 B 0 B 9

The computation of the inverse of the non-singular triangular

matrix M is carried out using a formula similar to (1). Since

M is a triangular matrix, its eigenvalues are simply the diagonal

elements 1,2,...,m; therefore, the coefficients of the characteriszic

polynomial of M, namely M(X) = Xm+Y m-l+b2Am-2+...+bm=O (3)



can be precomputed once and for all and stored. Using (3)

and the Cayley-Hamilton theorem, we can write

= Mm-l+bMm -2+...+hII

bm

This can be computed in 2+log m steps with m matrix processors

each performing matrix multiplication in time U, and log m

steps of addition in time a. We then need to compute M-S.

Thus the rank can be computed in

2(p+)log m + 3U = O(log m)

matrix multiplication steps.

The determination of A+ can be carried out from the stored

values of Bk and accumulation of these multiplied by the coeffi-

cients as in (1); this is then multiplied by At and divided by ak.

This requires log m matrix addition steps and 3 matrix multiplica-

tion steps, using m matrix processors.

Thus the computation of A+ takes (2p+3a)log m +6P time com-

plexity using m matrix processors.



4. Concluding remarks

(i) The above algorithm fails for a matrix over a finite

field, since the rank of AAt is not in general equal

to the rank of A. Also if we want to use a character-

istic equation method by directly computing the poly-

nomial of A, we cannot, in general, say that the rank

of the matrix is equal to the number of non-zero char-

acteristic roots. Further, even in the special case

where rank AA t equals rank A, equation (2) is not

solvable over the finite field. For instance, over

GF(2) the diagonal elements of M are alternatively 1

and 0 and hence the coefficients a k (except a 1) cannot

be determined. Even for this special case, over GF(p),

this procedure can determine at most the rank of a

(p-lxp-l) matrix. Hence this algorithm cannot be used

for matrices over a finite field which occur in graph

theory, coding theory and other areas of computer science.

(ii) The algorithm can be used to compute the inverses of

polynomial matrices [3].
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